A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey.

نویسندگان

  • Farran Briggs
  • W Martin Usrey
چکیده

Neurons in the lateral geniculate nucleus (LGN) not only provide feedforward input to primary visual cortex (V1), but also receive robust feedback from the cortex. Accordingly, visual processing in the LGN is continuously influenced by previous patterns of activity. This study examines the temporal properties of feedforward and feedback pathways between the LGN and V1 in the macaque monkey to provide a lower bound on how quickly the cortex can influence the LGN. In so doing, we identified a subclass of corticogeniculate neurons that receives direct, suprathreshold input from the LGN that is similar in latency to that directed to other recipient neurons (4.2 +/- 0.4 vs 4.0 +/- 0.2 ms). These neurons also provide feedback to the LGN that is significantly shorter in latency than that supplied by corticogeniculate neurons lacking LGN input (5.1 +/- 1.3 vs 11.1 +/- 2.3 ms, respectively). Across our sample of corticogeniculate neurons, the shortest combined visual response latency and feedback latency was 37 ms (mean, 52.5 +/- 3.8 ms), indicating that visual signals can rapidly travel from the periphery to the cortex and back to the LGN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagged cells in alert monkey lateral geniculate nucleus.

Five lagged cells were recognized by extracellular recording in the lateral geniculate nucleus of an awake, behaving macaque monkey. Previous reports of lagged cells were all in the anesthetized cat. Both parvocellular and magnocellular lagged cells were observed. Response timing was distributed continuously across the population, and both sustained and transient responses were seen in the magn...

متن کامل

Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey

Corticothalamic circuits are essential for reciprocal information exchange between the thalamus and cerebral cortex. Nevertheless, the role of corticothalamic circuits in sensory processing remains a mystery. In the visual system, afferents from retina to the lateral geniculate nucleus (LGN) and from LGN to primary visual cortex (V1) are organized into functionally distinct parallel processing ...

متن کامل

Local circuits in primary visual cortex of the macaque monkey.

The basic laminar organization of excitatory local circuitry in the primary visual cortex of the macaque monkey is similar to that described previously in the cat's visual cortex (Gilbert 1983). This circuitry is described here in the context of a two-level model that distinguishes between feedforward and feedback connections. Embedded within this basic framework is a more complex organization....

متن کامل

S Cone Contributions to the Magnocellular Visual Pathway in Macaque Monkey

The magnocellular visual pathway is believed to receive input from long (L) and middle (M), but not short (S), wavelength-sensitive cones. Recording from neurons in magnocellular layers of lateral geniculate nucleus (LGN) in macaque monkeys, we found that magnocellular neurons were unequivocally responsive to S cone-isolating stimuli. A quantitative analysis suggests that S cones provided about...

متن کامل

A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys.

Despite the increasing use of alert animals for studies aimed at understanding visual processing in the cerebral cortex, relatively little attention has been focused on quantifying the response properties of neurons that provide input to the cortex. Here, we examine the response properties of neurons in the lateral geniculate nucleus (LGN) of the thalamus in the alert macaque monkey and compare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 20  شماره 

صفحات  -

تاریخ انتشار 2007